PII: S0040-4020(96)00348-1

2-Alkoxy-2-fluoro-glycosyl Fluorides as 1,2-Dielectrophilic Synthons for the Synthesis of Naphtho- and Benzo-dihydrofuran Derivatives

Mª Isabel Matheu,* Raouf Echarri, Cèlia Domènech and Sergio Castillón*

Departament de Química, Universitat Rovira i Virgili, Pça. Imperial Tarraco 1, 43005 Tarragona, Spain.

Keywords: Glycosylation, glycosyl fluorides, benzo and naphtho-dihydrofuran derivatives.

Abstract: Benzo and naphtho-dihydrofuran derivatives were obtained by the reaction of glycosyl fluorides with phenol and naphthol derivatives in the presence of Cp₂MCl₂/AgOTf (M= Hf, Zr). This process include a glycosylation, 1,2-migration and an intramolecular cyclization.

Copyright © 1996 Elsevier Science Ltd

In the last ten years glycosyl fluorides have been extensively used in the field of glycosylation reactions because of the availability, stability and specific activation methods¹. We have recently shown that glycosyl fluoride 1² is a stable compound which can be selectively activated with metallocene derivatives (Cp₂MCl₂/AgX; M=Hf, Zr; X=ClO₄, OTf) to give fluororibopyranosyl nucleosides 2³ (Scheme 1).

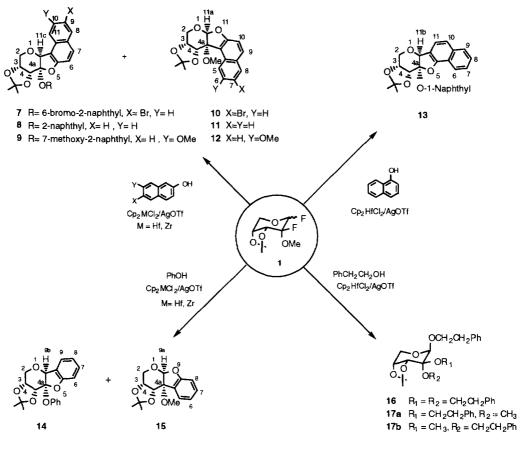
In a previous paper we showed that 1 behaves like a 1,2-dielectrophilic synthon when treated with nucleophiles in the presence of Cp₂MCl₂/AgX. Thus, the glycosylation of 1 with benzyl alcohol using Cp₂HfCl₂/AgClO₄lf-i in order to obtain O-glycosides gave the cyclization products 3 and 4. Whether

bis-(trimethylsityl)uracil
$$Cp_2MCl_2/AgClO_4$$

$$Cp_2HfCl_2/AgClO_4$$

$$Cp_2HfCl_2/AgClO_4$$

$$R=OBn$$

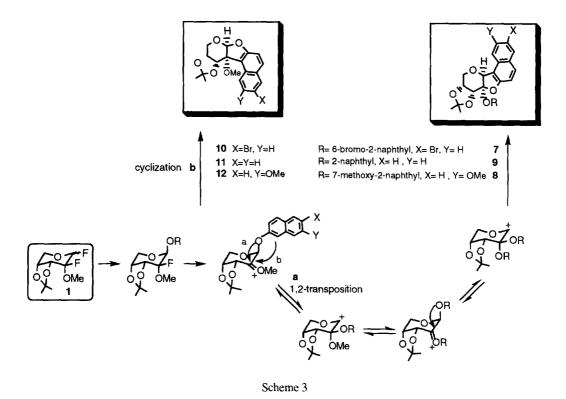

$$Cp_2HfCl_2/AgClO_4$$

$$R=OBn$$

$$Cp_2HfCl_2/AgClO_4$$

$$Cp_2HfC$$

Scheme 1


Scheme 2

isochromane derivatives are obtained or not depends on the promoter used and on the glycosyl fluoride/alcohol ratio. Thus, the use of Cp_2ZrCl_2 and/or a large excess of alcohol gave the glycosides 5 and 6.4

The proposed mechanism for this transformation⁵ involves the following sequence of events: a) alcohol attack at the anomeric position, b) activation of F-2, c) 1,2-migration of the anomeric substituent or the incorporation of another alcohol molecule at position 2 and d) intramolecular Friedel-Crafts cyclization. There should be an additional transacetalization reaction when obtaining 4.

Here we study the behaviour of this reaction in order to obtain furan and oxa-cycloheptane derivatives, for which, phenols and phenethyl alcohol derivatives are needed. It is a well-known fact that 2-naphthols react easily with electrophiles, so our initial experiments were carried out using some representative naphthols.

When 2-fluoro-3,4-isopropylidene-2-O-methyl-D-*ribo*-pento-pyranosyl fluoride 1 was allowed to react with 6-bromo-2-naphthol in a sugar/alcohol ratio of 1:2 and Cp₂HfCl₂/AgOTf (ratio 1: 2), a mixture of

tetracyclic compounds 7 and 10 (Scheme 2) were obtained in yields of 21% and 44% respectively. Similar results were obtained using Cp₂ZrCl₂/AgOTf (32% and 44% respectively), and no O-glycosides were obtained in either case.

The most significant spectroscopic data supporting structure 7 were: (a) the lack of fluorine in the ¹H, ¹³C and ¹⁹F NMR spectra, (b) the presence of 11 aromatic protons at 8.30-7.00 ppm which suggests the incorporation of two units of naphthol, one of which would be cyclized. The absence of an OCH₃ signal at ≈3.5 ppm is additional information that confirms the interchange between OCH₃ and naphthol groups, (c) no signals appeared in the acetal region (≈100ppm), (d) a HETCOR experiment enabled the signal at 43.8 ppm to be assigned to C-11c, indicating that it is not an anomeric carbon (Figure 1), (e) the absolute configuration of C-11c and C-4a was readily established on the basis of a NOESY experiment. A correlation between H-11c and one of the methyl groups of the isopropylidene group is observed, which shows that H-11c and the isopropylidene group are on the same face of the molecule. With all these data in mind, this structure is applicable to compound 7 and is the result of the glycosylation and subsequent F-2 activation, migration of anomeric group to position 2, leaving of the OCH₃ group and the intramolecular cyclization (Scheme 3).

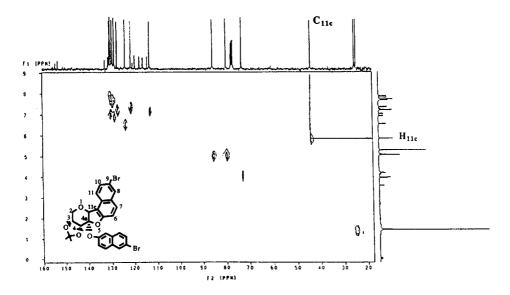


Figure 1: HETCOR experiment of compound 7

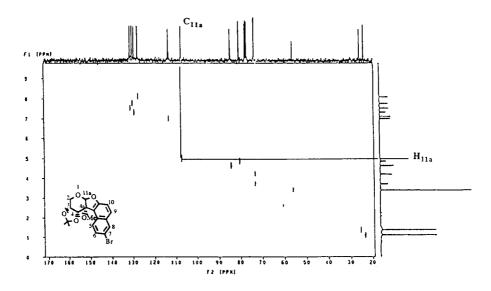


Figure 2: HETCOR experiment of compound 8.

The ¹H and ¹³C NMR spectra for compound **10** were similar to those of product **7**. However, the main differences were: (a) the presence of an acetalic carbon at 107.2 in the ¹³C NMR spectrum which was assigned to C-11a (HETCOR experiment, Figure 2), (b) the signal at 3.46 ppm in the ¹H NMR spectrum and the presence of only 5 aromatic protons shows that the OCH₃ group of the starting material remains in this cyclic product.

Thus the spectroscopic data confirm that unlike the reaction with benzyl alcohol, the main product obtained (10) resulted from the O-glycosylation and intramolecular cyclization of the naphtalene ring over C-2. This probably has to do with the higher nucleophilic character of the α position in 2-naphthol with regard to the aromatic ring of benzylic alcohol. Consequently the cyclization (b) competes with 1,2-transposition (a). These data agree with the proposed mechanism,⁵ in accordance with the consideration that glycosilation leads exclusively to the axial glycoside, and it explains that cyclization takes place only above the molecular plane (Scheme 3).

O.R. Martin⁶⁻⁹ has shown that the intramolecular reaction of the 2-OBn in pyranoid derivatives is increased by the presence of activating groups, such as m-OMe. On this basis we decided to use more activated naphthols like 2-naphthol or 7-methoxy-2-naphthol. Thus, when glycosyl fluoride 1 was treated with 2-naphthol in the same reaction conditions, we obtained the cyclic products 8 and 11 in yields of 26% and 9% respectively (Scheme 2). The reaction with the more activated 7-methoxy-2-naphthol gave a mixture of the expected products 9 and 12 in yields of 36% and 13% respectively. The spectra data of all these products were in accordance with the proposed structures.

The reaction of 1 with 1-naphthol gave a mixture of products from which 13 was isolated in only a 14% yield (Scheme 2). Although the product corresponding to O-glycosylation and subsequent cyclization was expected to form, the spectrum of the mixture doesn't show either the OCH₃ signal in ¹H NMR or the anomeric carbon signal in ¹³C NMR. On the other hand, position 2 of naphthalene undergoes electrophilic attacks with more difficulty than position 1. This fact means that 1-naphthol are less reactive towards Friedel-Crafts cyclization and it could explain the lower yield obtained, and that the main product was the result of a 1,2-transposition (Scheme 3, via a).

When the glycosyl fluoride 1 was allowed to react with phenol in the presence of Cp₂HfCl₂/AgOTf, a mixture of cyclic compounds 14 and 15 was obtained, in addition to other unidentifiable products.

The most actived 3,5-dimethoxyphenol in the same conditions led to a mixture where cyclization and O-glycoside products were detected in a yield of approximately 50%. So, using this more electron-rich phenol not only increases the activation level of the ortho position to the phenolic hydroxyl group (cyclization favoured) but also the nucleophilic character of the oxygen atom (mixture of O-glycosides favoured). Anyway, the major product was the cyclic and transcetalised compound.

In order to extend the possibilities of this process we tried to obtain seven-membered rings by reacting of 1 with phenethyl alcohol. However, no cyclization products were detected, and products 16, 17a, 17b were obtained in ~51% yield as an inseparable mixture. The higher activation energy of the transition state leading to a seven-member ring explains the lack of cyclization products and the fact that the O-glycosylation reaction competes favourably.

The use of 2-methoxy-phenethyl alcohol in the reaction with 1 also gave an inseparable mixture of O-glycosides.

In conclusion benzo- and naphtho-dihydrofurans can be obtained from the 2-alkoxy-2-fluoro-glycosyl fluoride 1 by reaction with phenol and naphthol derivatives in the presence of Cp₂MCl₂/AgOTf (M= Hf, Zr). Reaction of 1 with phenethyl alcohol led only to polysubstitution and no cyclized products were formed. These reactions begin by F-1 activation, glycosylation and take place through different intermediates in equilibrium. The determining step is the competition, after the removal of F-2, among 1,2-migration, intramolecular Friedel-Craft reaction and substitution. The result depends on the activation of the aromatic ring, the size of the cycle to be formed and the alcohol concentration.

EXPERIMENTAL SECTION

General Procedures. Melting points were measured in a Büchi 510 apparatus and are uncorrected. ¹H, ¹³C and ¹⁹F NMR spectra were recorded in CDCl₃ on a Varian Gemini 300 instrument (300 MHz, 75 MHz and 288 MHz respectively), using Me₄Si, the central peak at δ 77 ppm and CFCl₃, respectively as internal reference. Elemental analyses were determined using a Carlo Erba apparatus. Flash column chromatography was performed on silicagel 60 A CC. Preparative thin layer chromatography was performed on silicagel 60. All the reactions were carried out under an atmosphere of dry argon in oven-dried glassware. Reaction temperatures were recorded as bath temperatures. Solvents for chromatography were distilled at atmospheric pressure prior to use. Anhydrous CH₂Cl₂ was distilled from CaH₂. Reported yields refer to chromatographically and spectroscopically homogeneous material.

General Procedure for the Reaction of 2-fluoro-3,4-isopropylidene-2-O-methyl- α and B-D-ribo-pento-pyranosyl fluoride (1) with Alcohols: A mixture of Cp₂HfCl₂ (0.5 mmols), AgOTf (1 mmol) and powered molecular sieves 4 Å (previously actived) (440 mg) in dichlorometane (1.5 ml) was stirred for 10 min at room temperature. Then, the alcohol (1 mmol) in dichlorometane (0.5 ml) was added and, after 5 minutes at room temperature, the mixture was cooled to -50 °C. Afterwards, the glycosyl fluoride (1) (0.5 mmol) was added and the temperature was left to rise to room temperature. When the reaction finished, the reaction mixture was poured into a saturated aqueous NaHCO₃ solution, and filtered through a Cellite pad. The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (3x10 ml) and the combined layers were dried (MgSO₄) and evaporated. The crude oil was purified by flash or thin layer chromatography.

Reaction of 2-fluoro-3,4-isopropylidene-2-O-methyl- α and β -D-ribo-pento-pyranosyl fluoride (1) with 6-bromo-2-naphthol.

a) Using Cp₂HfCl₂. The general procedure was carried out with Cp₂HfCl₂ (180 mg, 0.48 mmols), AgOTf (247 mg, 0.96 mmol) and 4Å molecular sieves (422 mg), 6-bromo-2-naphthol (214 mg, 0.96 mmol) and

compound 1 (107 mg, 0.48 mmol) for 3 hours. The standard work-up gave a crude oil which was purified by flash chromatography (ethyl acetate/hexane 1:6) obtaining product 7 (57 mg, 21 %) as a white solid, and product 10 (86 mg, 44%) as a syrup.

(7): m.p.= 204-206 °C, $[\alpha]_D$ = -177.0° (c 0.3, CHCl₃), ¹H NMR (CDCl₃, 300 MHz), δ 7.79-6.40 (m, 11H, H_{Ar}), 5.77 (s, 1H, H-11c), 5.02-4.94 (m, 2H, H-3, H-4), 4.12 (dd, 1H, J_{2ax-2eq}= 10.5 Hz, J_{2ax-3}= 3.6 Hz, H-2ax), 3.88 (d, 1H, H-2eq), 1.37 (s, 6H, 2CH₃); ¹³C(CDCl₃, 75.4 MHz), δ 154.3 (O- \underline{C}_{Ar}), 153.1 (O- \underline{C}_{Ar}), 130.5-112.7 (C_{Ar}), 113.7 (Cisopr) 85.3 (C-4), 79.6 (C-3), 72.8 (C-2), 43.8 (C-11c), 25.3 (CH₃), 24.6 (CH₃). Anal. Calcd for C₂₈H₂₃O₅Br₂: C, 56.21; H, 3.68. Found: C, 55.96, H, 3.72.

(10): $[\alpha]_{D}$ = -113.0° (c 0.8, CHCl₃), ¹H NMR (CDCl₃, 300 MHz), δ 8.17 (d, 1H, J₅₋₆= 9.1 Hz, H-5), 7.83 (d, 1H, J₈₋₆= 2.0 Hz, H-8), 7.60 (d, 1H, J₁₀₋₉= 8.8 Hz, H-10), 7.39 (dd, 1H, H-6), 7.06 (d, 1H, H-9), 5.05 (s, 1H, H-11a), 4.93 (dd, 1H, J₃₋₄= 6.0 Hz, J_{3-2ax}= 4.1 Hz, H-3), 4.72 (d, 1H, H₄), 4.28 (d, 1H, J_{2eq-2ax}= 11.0 Hz, H-2eq), 3.76 (dd, 1H, H-2ax), 3.46 (s, 3H, OCH₃), 1.45 (s, 3H, CH₃), 1.17 (s, 3H, CH₃); ¹³C(CDCl₃, 75.4 MHz), δ 156.0 (C-10a), 130.9 (C-10), 129.9 (C-8), 129.2 (C-6), 127.4 (C-5), 113.2 (C-9), 125.4, 123.5, 121.6 (C-4b, C-4c, C-8a), 112.9, 112.6 (Cisopr, C-7), 107.2 (C-11a), 93.5 (C-4a), 84.3 (C-4), 80.3 (C-3), 73.2 (C-2), 56.1 (OCH₃), 25.5 (CH₃), 23.5 (CH₃). Anal. Calcd for C₁₉H₁₉O₅Br: C, 56.02; H, 4.67. Found: C, 55.85, H, 4.60.

b) Using Cp₂ZrCl₂. The general procedure was followed starting from compound 1 (107 mg, 0.48 mmol), Cp₂ZrCl₂ (140 mg, 0.48 mmol), AgOTf (247 mg, 0.96 mmol), 4 Å molecular sieves (422 mg), and 6-bromo-2-naphthol (214 mg, 0.96 mmol). After 2.5 hours and the corresponding work-up, the resulting crude oil was purified by thin layer chromatography (ethyl acetate/hexane 1:6) to give compounds 7 (87 mg, 32 %) and 10 (86 mg, 44 %).

Reaction of 2-fluoro-3,4-isopropylidene-2-O-methyl- α and β -D-ribo-pento-pyranosyl fluoride (1) with 2-naphthol.

Compound 1 (118 mg, 0.53 mmol) in dichloromethane (3 ml) was treated with Cp₂HfCl₂ (200 mg, 0.53 mmols), AgOTf (270 mg, 1.05 mmol) and molecular sieves 4Å (462 mg), and 2-naphthol (152 mg, 1.05 mmol) for 2 hours in accordance with the general procedure. The reaction crude oil was purified by thin layer chromatography (ethyl acetate/hexane 1:6) obtaining 60 mg (26 % yield) of compound 8 as a white solid, and 9 mg (5% yield) of compound 11 as a syrup.

(8): m.p.= 112-114 °C, $[\alpha]_{D}$ = -101.0° (c 0.2, CHCl₃), ¹H NMR (CDCl₃, 300 MHz) δ 7.80–6.65 (m, 13H, H_{Ar}), 5.90 (s, 1H, H-11c), 5.05 (m, 2H, H-3, H-4), 4.21 (dd, 1H, J_{2ax-2eq}= 10.4 Hz, J_{2ax-3}= 3.8 Hz, H-2ax), 3.96 (d, 1H, H-2eq), 1.46 (s, 3H, CH₃), 1.44 (s, 3H, CH₃); ¹³C (CDCl₃, 75.4 MHz), δ 153.1 (O- \underline{C}_{Ar}), 134.5 (O- \underline{C}_{Ar}), 130.6-112.5 (C_{Ar}), 114.0, 109.9 (C-4a, Cisopr), 85.9, 80.0 (C-4, C-3), 73.2 (C-2), 44.3 (C-11c), 25.8 (CH₃), 25.1 (CH₃). Anal. Calcd for C₂₈H₂₄O₅: C, 76.31; H, 5.45. Found: C, 76.40, H, 5.50.

(11): 1 H NMR (CDCl₃, 300 MHz) δ 8.28-6.96 (m, 6H, H_{Ar}), 5.45 (s, 1H, H-11a), 5.16 (d, 1H, J₄₋₃= 6.1 Hz, H-4), 4.85 (dd, 1H, J_{3-2ax}= 4.2 Hz, H-3), 4.18 (d, 1H, J_{2eq-2ax}= 10.2 Hz, H-2eq), 3.86 (dd, 1H, H-2ax), 3.62 (s, 3H, OCH₃), 1.49 (s, 3H, CH₃), 1.21 (s, 3H, CH₃); 13 C (CDCl₃, 75.4 MHz), δ 132.2, 128.2,

125.9, 125.9, 123.5, 115.3 (C-10, C-9, C-8, C-7, C-6, C-5), 112.4, 112.0 (C-4a, Cisopr), 111.9 (C-11a), 80.9, 80.6 (C-3, C-4), 72.3 (C-2), 58.3 (OCH₃), 25.6 (CH₃), 23.5 (CH₃).

Reaction of 2-fluoro-3,4-isopropylidene-2-O-methyl- α and β -D-ribo-pento-pyranosyl fluoride (1) with 7-methoxy-2-naphthol.

Following the experimental procedure, compound 1 (64 mg, 0.29 mmol) in dichlorometane was treated with Cp₂HfCl₂ (110 mg, 0.29 mmols), AgOTf (149 mg, 0.58 mmol) molecular sieves 4Å (255 mg), and 7-methoxy-2-naphthol (100 mg, 0.58 mmol) for 1.5 hours. The reaction crude was purified by thin layer chromatography (ethyl acetate/hexane 1:6) obtaining 52 mg (36 % yield) of compound 9 as a white solid, and 13 mg (13 % yield) of compound 12 as a syrup.

(9): m.p.= 217-218 °C, $[\alpha]_{D}$ = -125.0° (c 0.2, CHCl₃), ¹H NMR (CDCl₃, 300 MHz) δ 7.60-5.90 (m, 11H_{Ar}), 5.76 (s, 1H, H-11c), 5.00 (m, 2H, H-3, H-4), 4.14 (dd, 1H, $J_{2ax-2eq}$ = 10.4 Hz, J_{2ax-3} = 3.5 Hz, H-2ax), 3.93 (d, 1H, H-2eq), 3.10 (s, 3H, OCH₃), 2.99 (s, 3H, OCH₃), 1.40 (s, 3H, CH₃), 1.37 (s, 3H, CH₃); ¹³C (CDCl₃, 75.4 MHz), δ 158.0 (O- C_{Ar}), 156.7 (O- C_{Ar}), 154.4 (O- C_{Ar}), 153.5 (O- C_{Ar}), 129.7-100.1 (C_{Ar}), 85.4, 79.6 (C-3, C-4), 72.8 (C-2), 54.4 (2 OCH₃), 44.0 (C-11c), 25.3 (CH₃), 24.6 (CH₃). Anal. Calcd for C₃₀H₂₈O₇: C, 72.06; H, 5.60. Found: C, 71.82, H, 5.59.

(12): 1 H NMR (CDCl₃, 300 MHz) δ 7.63 (d, 1H, J₅₋₇= 2.5 Hz, H-5), 7.61 (d, 1H, J₈₋₇= 9.1 Hz, H-8), 7.56 (d, 1H, J₁₀₋₉= 8.9 Hz, H-10), 6.90 (dd, 1H, H-7), 6.80 (d, 1H, H-9), 5.40 (s, 1H, H-11-a), 5.15 (d, 1H, J₄₋₃= 6.0 Hz, H-4), 4.85 (dd, 1H, J_{3-2ax}= 4.3 Hz, H-3), 4.16 (d, 1H, J_{2eq-2ax}= 10.4 Hz, H-2eq), 3.90 (dd, 1H, H-2ax), 3.85 (OCH₃), 3.60 (OCH₃), 1.48 (CH₃), 1.22 (CH₃); 13 C (CDCl₃, 75.4 MHz), δ 157.9, 155.3 (C-6, C-10a), 131.9-104.7 (CA_T), 115.2 (C-11a), 80.8 (C-3), 80.6 (C-4), 72.6 (C-2), 58.3, 55.4 (OCH₃), 26.1 (CH₃), 23.4 (CH₃).

Reaction of 2-fluoro-3,4-isopropylidene-2-O-methyl- α and β -D-ribo-pento-pyranosyl fluoride (1) with 1-naphthol.

Following the general procedure for the reaction of the glycosyl fluoride 1 with alcohols, compound 1 (127 mg, 0.57 mmol) was treated in dichloromethane with Cp₂HfCl₂ (215 mg, 0.57 mmols), AgOTf (293 mg, 1.14 mmol) 4Å molecular sieves (502 mg), and 1-naphthol (163 mg, 1.14 mmol) for 2 hours. Successive purifications by thin layer chromatography (ethyl acetate/hexane 1:5) gave 38 mg (14 % yield) of compound of a mixture where product 13 was present in >96%.

(13): ¹H NMR (CDCl₃, 300 MHz) δ 8.55-6.40 (m, 13H, H_{Ar}), 5.76 (s, 1H, H-11b), 4.96 (d, 1H, J₃₋₄= 5.9 Hz, J_{3-2ax}= 4.4 Hz, H-3), 4.73 (d, 1H, H-4), 4.12 (dd, 1H, J_{2ax-2eq}= 10.4 Hz, H-2ax), 3.87 (d, 1H, H-2eq), 1.49 (s, 3H, CH₃), 1.30 (s, 3H, CH₃); ¹³C (CDCl₃, 75.4 MHz), δ 128.1-108.2 (C_{Ar}), 85.0 (C-4), 79.6 (C-3), 73.8 (C-2), 44.7 (C-11b), 26.0 (CH₃), 24.6 (CH₃).

(14) (spectral data obtained from the mixture): ^{1}H NMR (CDCl₃, 300 MHz), δ 7.20-6.65 (m, 9H, H_{Ar}), 4.87 (dd, 1H, J₃₋₄= 5.8 Hz, J_{3-2ax}= 3.7 Hz, H-3), 4.83 (s, 1H, H-9b), 4.71 (d, 1H, H-4), 4.00 (dd, 1H, J_{2ax-2eq}= 10.4 Hz, H-2ax), 3.90 (d, 1H, H-2eq), 1.26 (s, 6H, 2CH₃). ^{13}C (CDCl₃, 75.4 MHz), δ 157.6 (O-C_{Ar}), 154.9 (O-C_{Ar}), 132.0-110.0 (C_{Ar}), 118.8 (C-4a), 113.3 (Cisopr), 85.0 (C-4), 79.7 (C-3), 72.6 (C-2), 53.4 (C-9b), 25.9 (CH₃), 24.9 (CH₃).

(15) (spectral data obtained from the mixture): ^{1}H NMR (CDCl₃, 300 MHz), δ 7.30-6.80 (m, 4H, H_{Ar}), 5.66 (s, 1H, H-9a), 5.11 (m, 1H, H-3), 4.72 (d, 1H, J₄₋₃= 6.2 Hz, H-4), 4.26 (dd, 1H, J_{2ax-2eq}= 10.8 Hz, J_{2ax-3}= 4.4 Hz, H-2ax), 4.17 (dd, 1H, J_{2eq-3}= 1.1 Hz, H-2eq), 3.68 (s, 3H, OCH₃), 1.51 (s, 3H, CH₃), 1.29 (s, 3H, CH₃). ^{13}C (CDCl₃, 75.4 MHz), δ 155.2 (C-8a), 131.6-111.1 (C_{Ar}), 106.8 (C-9a), 85.7 (C-4), 81.1 (C-3), 72.2 (C-2), 57.6 (OCH₃), 26.2 (CH₃), 25.0 (CH₃).

Acknowledgements. This project was carried out with the financial support from DGICYT (Ministerio de Educación y Ciencia, Spain), Project PB92-510.

References and Notes

- For the activation and/or cleavage of glycosyl fluorides, see: a) (SnCl2-AgClO4) Mukaiyama, T.; Murai, Y.; Shoda, S. Chem. Lett. 1981, 431, J. Am. Chem. Soc. 1960, 82, 2288. b) (TMSOTf, SiF4) Hashimoto, S.; Hayashi, M.; Noyori, R. Tetrahedron Lett. 1984, 25, 1379. c) (BF3.Et2O) Araki, Y.; Watanabe, K.; Kuan, F.; Itoh, K.; Kobayashi, N.; Ishido, Y. Carbohydr. Res. 1984, 127, C5. d) Nicolaou, K.C.; Dolle, R.E.; Chucholowsky, A.; Randall, J.L. J. Chem. Soc., Chem. Commun. 1984, 1155. e) (TiF4) Kreuzer, A.; Thiem, J. Carbohydr. Res. 1986, 149, 347. f) (Cp2MCl2-AgClO4, M=Hf, Zr, Ti) Matsumoto, T.; Maeta, H.; g) Suzuki, K.; Tsuchihashi, G. Tetrahedron Lett. 1988, 29, 3567. h) Matsumoto, T.; Katsuki, M.; Suzuki, K. Tetrahedron Lett. 1988, 29, 6935. i) Suzuki, K.; Maeta, H.; Matsumoto, T. Tetrahedron Lett. 1989, 30, 4853. j) Suzuki, K.; Maeta, H.; Suzuki, T.; Matsumoto, T. Tetrahedron Lett. 1989, 30, 6879. k) (Me2GaCl) Kobayashi, S.; Koide, K.; Ohno, M. Tetrahedron Lett. 1990, 31, 2435. l) (Tf2O) Wessel, H.P. Tetrahedron Lett. 1990, 31,6863. m) (Bu2SnCl2-2AgClO4), Maeta, H; Matsumoto, T.; Suzuki, K. Carbohydr. Res. 1993, 249, 49. n) Yb(OTF)3 Hosono, S.; Kim, W.S.; Sasai, H.; Shibasaki, M.J. J. Org. Chem. 1995, 60, 4.
- El-Laghdach, A.; Echarri, R.; Matheu, M.I.; Barrena, M.I.; Castillón, S.; García, J. J. Org. Chem. 1991, 56, 4556.
- 3 Matheu, M. I.; Echarri, R.; Castillón, S. Tetrahedron Lett. 1992, 33, 1093.
- 4 Matheu, M. I.; Echarri, R.; Castillón, S. Tetrahedron Lett. 1993, 34, 2361.
- 5 Eharri, R.; Matheu, M.I.; Castillón, S. Tetrahedron 1994, 30, 9125.

- 6 Martin O.R. Tetrahedron Lett. 1985, 26, 2055.
- 7 Martin O.R.; Mahnken, R.E. J. Chem. Soc., Chem. Commun. 1986, 497.
- 8 Martin, O.R.; Rao, S.P.; El-Shenawy, H.A.; Kurz, K.G.; Cutler, A.B. J. Org. Chem. 1988, 53, 3287.
- 9 Martin, O.R.; Hendricks, C.A.V.; Deshpande, P.P.; Cutler, A.B.; Kane, S.P.; Rao, S.P. *Carbohydr. Res*, **1990**, 196, 41.

(Received in UK 25 March 1996; accepted 2 April 1996)